linphone-iphone/linphone/mediastreamer/affine.c
aymeric 2b8200409c Initial import
git-svn-id: svn+ssh://svn.savannah.nongnu.org/linphone/trunk@1 3f6dc0c8-ddfe-455d-9043-3cd528dc4637
2008-09-04 15:47:34 +00:00

144 lines
4.6 KiB
C

/*
* affine.c -- Affine Transforms for 2d objects
* Copyright (C) 2002 Charles Yates <charles.yates@pandora.be>
* Portions Copyright (C) 2003 Dan Dennedy <dan@dennedy.org>
* ported from C++ to C
* wrote affine_scale()
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program; if not, write to the Free Software Foundation,
* Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
*/
#include "affine.h"
static inline void Multiply( affine_transform_t *this, affine_transform_t *that )
{
double output[2][2];
register int i, j;
for ( i = 0; i < 2; i ++ )
for ( j = 0; j < 2; j ++ )
output[ i ][ j ] = this->matrix[ i ][ 0 ] * that->matrix[ j ][ 0 ] +
this->matrix[ i ][ 1 ] * that->matrix[ j ][ 1 ];
this->matrix[ 0 ][ 0 ] = output[ 0 ][ 0 ];
this->matrix[ 0 ][ 1 ] = output[ 0 ][ 1 ];
this->matrix[ 1 ][ 0 ] = output[ 1 ][ 0 ];
this->matrix[ 1 ][ 1 ] = output[ 1 ][ 1 ];
}
void affine_transform_init( affine_transform_t *this )
{
this->matrix[ 0 ][ 0 ] = 1;
this->matrix[ 0 ][ 1 ] = 0;
this->matrix[ 1 ][ 0 ] = 0;
this->matrix[ 1 ][ 1 ] = 1;
}
// Rotate by a given angle
void affine_transform_rotate( affine_transform_t *this, double angle )
{
affine_transform_t affine;
affine.matrix[ 0 ][ 0 ] = cos( angle * M_PI / 180 );
affine.matrix[ 0 ][ 1 ] = 0 - sin( angle * M_PI / 180 );
affine.matrix[ 1 ][ 0 ] = sin( angle * M_PI / 180 );
affine.matrix[ 1 ][ 1 ] = cos( angle * M_PI / 180 );
Multiply( this, &affine );
}
// Shear by a given value
void affine_transform_shear( affine_transform_t *this, double shear )
{
affine_transform_t affine;
affine.matrix[ 0 ][ 0 ] = 1;
affine.matrix[ 0 ][ 1 ] = shear;
affine.matrix[ 1 ][ 0 ] = 0;
affine.matrix[ 1 ][ 1 ] = 1;
Multiply( this, &affine );
}
void affine_transform_scale( affine_transform_t *this, double sx, double sy )
{
affine_transform_t affine;
affine.matrix[ 0 ][ 0 ] = sx;
affine.matrix[ 0 ][ 1 ] = 0;
affine.matrix[ 1 ][ 0 ] = 0;
affine.matrix[ 1 ][ 1 ] = sy;
Multiply( this, &affine );
}
// Obtain the mapped x coordinate of the input
double affine_transform_mapx( affine_transform_t *this, int x, int y )
{
return this->matrix[0][0] * x + this->matrix[0][1] * y;
}
// Obtain the mapped y coordinate of the input
double affine_transform_mapy( affine_transform_t *this, int x, int y )
{
return this->matrix[1][0] * x + this->matrix[1][1] * y;
}
#define CLAMP(x, low, high) (((x) > (high)) ? (high) : (((x) < (low)) ? (low) : (x)))
void affine_scale( const unsigned char *src, unsigned char *dest, int src_width, int src_height, int dest_width, int dest_height, int bpp )
{
affine_transform_t affine;
double scale_x = (double) dest_width / (double) src_width;
double scale_y = (double) dest_height / (double) src_height;
register unsigned char *d = dest;
register const unsigned char *s = src;
register int i, j, k, x, y;
affine_transform_init( &affine );
if ( scale_x <= 1.0 && scale_y <= 1.0 )
{
affine_transform_scale( &affine, scale_x, scale_y );
for( j = 0; j < src_height; j++ )
for( i = 0; i < src_width; i++ )
{
x = (int) ( affine_transform_mapx( &affine, i - src_width/2, j - src_height/2 ) );
y = (int) ( affine_transform_mapy( &affine, i - src_width/2, j - src_height/2 ) );
x += dest_width/2;
x = CLAMP( x, 0, dest_width);
y += dest_height/2;
y = CLAMP( y, 0, dest_height);
s = src + (j*src_width*bpp) + i*bpp; // + (bpp-1);
d = dest + y*dest_width*bpp + x*bpp;
for ( k = 0; k < bpp; k++ )
*d++ = *s++;
}
}
else if ( scale_x > 1.0 && scale_y > 1.0 )
{
affine_transform_scale( &affine, 1.0/scale_x, 1.0/scale_y );
for( y = 0; y < dest_height; y++ )
for( x = 0; x < dest_width; x++ )
{
i = (int) ( affine_transform_mapx( &affine, x - dest_width/2, y - dest_height/2 ) );
j = (int) ( affine_transform_mapy( &affine, x - dest_width/2, y - dest_height/2 ) );
i += src_width/2;
i = CLAMP( i, 0, dest_width);
j += src_height/2;
j = CLAMP( j, 0, dest_height);
s = src + (j*src_width*bpp) + i*bpp; // + (bpp-1);
d = dest + y*dest_width*bpp + x*bpp;
for ( k = 0; k < bpp; k++ )
*d++ = *s++;
}
}
}