pico-keys-sdk/src/fs/low_flash.c
Pol Henarejos ab1b245f4f
Fix write & read to flash partition.
Signed-off-by: Pol Henarejos <pol.henarejos@cttc.es>
2024-04-09 19:58:33 +02:00

361 lines
11 KiB
C

/*
* This file is part of the Pico Keys SDK distribution (https://github.com/polhenarejos/pico-keys-sdk).
* Copyright (c) 2022 Pol Henarejos.
*
* This program is free software: you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation, version 3.
*
* This program is distributed in the hope that it will be useful, but
* WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
* General Public License for more details.
*
* You should have received a copy of the GNU General Public License
* along with this program. If not, see <http://www.gnu.org/licenses/>.
*/
#include <stdint.h>
#include <stdlib.h>
#include <stdio.h>
#if !defined(ENABLE_EMULATION) && !defined(ESP_PLATFORM)
#include "pico/stdlib.h"
#include "hardware/flash.h"
#include "hardware/sync.h"
#include "pico/mutex.h"
#include "pico/sem.h"
#include "pico/multicore.h"
#else
#ifdef _MSC_VER
#include <windows.h>
#include <io.h>
#define O_RDWR _O_RDWR
#define open _open
#define write _write
#define mode_t unsigned short
#define lseek _lseek
#include "mman.h"
#else
#ifdef ESP_PLATFORM
#include "esp_compat.h"
#include "esp_partition.h"
const esp_partition_t *part0;
#else
#include <unistd.h>
#include <sys/mman.h>
#endif
#include <fcntl.h>
#define FLASH_SECTOR_SIZE 4096
#define PICO_FLASH_SIZE_BYTES (8 * 1024 * 1024)
#define XIP_BASE 0
int fd_map = 0;
uint8_t *map = NULL;
#endif
#endif
#include "pico_keys.h"
#include <string.h>
#define TOTAL_FLASH_PAGES 4
extern const uintptr_t start_data_pool;
extern const uintptr_t end_rom_pool;
typedef struct page_flash {
uint8_t page[FLASH_SECTOR_SIZE];
uintptr_t address;
bool ready;
bool erase;
size_t page_size; //this param is for easy erase. It allows to erase with a single call. IT DOES NOT APPLY TO WRITE
} page_flash_t;
static page_flash_t flash_pages[TOTAL_FLASH_PAGES];
#ifndef ENABLE_EMULATION
static mutex_t mtx_flash;
static semaphore_t sem_wait;
#endif
#ifndef ENABLE_EMULATION
static bool locked_out = false;
#else
static bool locked_out = true;
#endif
static uint8_t ready_pages = 0;
bool flash_available = false;
//this function has to be called from the core 0
void do_flash() {
#ifndef ENABLE_EMULATION
if (mutex_try_enter(&mtx_flash, NULL) == true) {
#endif
if (locked_out == true && flash_available == true && ready_pages > 0) {
//printf(" DO_FLASH AVAILABLE\r\n");
for (int r = 0; r < TOTAL_FLASH_PAGES; r++) {
if (flash_pages[r].ready == true) {
#ifndef ENABLE_EMULATION
//printf("WRITTING %X\r\n",flash_pages[r].address-XIP_BASE);
while (multicore_lockout_start_timeout_us(1000) == false) {
;
}
//printf("WRITTING %X\r\n",flash_pages[r].address-XIP_BASE);
uint32_t ints = save_and_disable_interrupts();
flash_range_erase(flash_pages[r].address - XIP_BASE, FLASH_SECTOR_SIZE);
flash_range_program(flash_pages[r].address - XIP_BASE,
flash_pages[r].page,
FLASH_SECTOR_SIZE);
restore_interrupts(ints);
while (multicore_lockout_end_timeout_us(1000) == false) {
;
}
//printf("WRITEN %X !\r\n",flash_pages[r].address);
#else
memcpy(map + flash_pages[r].address, flash_pages[r].page, FLASH_SECTOR_SIZE);
#endif
flash_pages[r].ready = false;
ready_pages--;
}
else if (flash_pages[r].erase == true) {
#ifndef ENABLE_EMULATION
while (multicore_lockout_start_timeout_us(1000) == false) {
;
}
//printf("WRITTING\r\n");
flash_range_erase(flash_pages[r].address - XIP_BASE,
flash_pages[r].page_size ? ((int) (flash_pages[r].page_size /
FLASH_SECTOR_SIZE)) *
FLASH_SECTOR_SIZE : FLASH_SECTOR_SIZE);
while (multicore_lockout_end_timeout_us(1000) == false) {
;
}
#else
memset(map + flash_pages[r].address, 0, FLASH_SECTOR_SIZE);
#endif
flash_pages[r].erase = false;
ready_pages--;
}
}
#ifdef ENABLE_EMULATION
msync(map, PICO_FLASH_SIZE_BYTES, MS_SYNC);
#endif
if (ready_pages != 0) {
printf("ERROR: DO FLASH DOES NOT HAVE ZERO PAGES\n");
}
}
flash_available = false;
#ifndef ENABLE_EMULATION
mutex_exit(&mtx_flash);
}
sem_release(&sem_wait);
#endif
}
//this function has to be called from the core 0
void low_flash_init() {
memset(flash_pages, 0, sizeof(page_flash_t) * TOTAL_FLASH_PAGES);
#if defined(ENABLE_EMULATION)
fd_map = open("memory.flash", O_RDWR | O_CREAT, (mode_t) 0600);
lseek(fd_map, PICO_FLASH_SIZE_BYTES - 1, SEEK_SET);
write(fd_map, "", 1);
map = mmap(0, PICO_FLASH_SIZE_BYTES, PROT_READ | PROT_WRITE, MAP_SHARED, fd_map, 0);
#else
mutex_init(&mtx_flash);
sem_init(&sem_wait, 0, 1);
#if defined(ESP_PLATFORM)
part0 = esp_partition_find_first(0x40, 0x1, "part0");
esp_partition_mmap(part0, 0, part0->size, ESP_PARTITION_MMAP_DATA, (const void **)&map, (esp_partition_mmap_handle_t *)&fd_map);
#endif
#endif
}
void low_flash_init_core1() {
#ifndef ENABLE_EMULATION
mutex_enter_blocking(&mtx_flash);
multicore_lockout_victim_init();
#endif
locked_out = true;
#ifndef ENABLE_EMULATION
mutex_exit(&mtx_flash);
#endif
}
void wait_flash_finish() {
#ifndef ENABLE_EMULATION
sem_acquire_blocking(&sem_wait); //blocks until released
//wake up
sem_acquire_blocking(&sem_wait); //decrease permits
#endif
}
void low_flash_available() {
#ifndef ENABLE_EMULATION
mutex_enter_blocking(&mtx_flash);
#endif
flash_available = true;
#ifndef ENABLE_EMULATION
mutex_exit(&mtx_flash);
#endif
}
page_flash_t *find_free_page(uintptr_t addr) {
uintptr_t addr_alg = addr & -FLASH_SECTOR_SIZE;
page_flash_t *p = NULL;
for (int r = 0; r < TOTAL_FLASH_PAGES; r++) {
if ((!flash_pages[r].ready && !flash_pages[r].erase) ||
flash_pages[r].address == addr_alg) { //first available
p = &flash_pages[r];
if (!flash_pages[r].ready && !flash_pages[r].erase) {
#if !defined(ENABLE_EMULATION) && !defined(ESP_PLATFORM)
memcpy(p->page, (uint8_t *) addr_alg, FLASH_SECTOR_SIZE);
#else
memcpy(p->page,
(addr >= start_data_pool &&
addr <= end_rom_pool + sizeof(uintptr_t)) ? (uint8_t *) (map + addr_alg) : (uint8_t *) addr_alg,
FLASH_SECTOR_SIZE);
#endif
ready_pages++;
p->address = addr_alg;
p->ready = true;
}
return p;
}
}
return NULL;
}
int flash_program_block(uintptr_t addr, const uint8_t *data, size_t len) {
page_flash_t *p = NULL;
if (!data || len == 0) {
return CCID_ERR_NULL_PARAM;
}
#ifndef ENABLE_EMULATION
mutex_enter_blocking(&mtx_flash);
#endif
if (ready_pages == TOTAL_FLASH_PAGES) {
#ifndef ENABLE_EMULATION
mutex_exit(&mtx_flash);
#endif
printf("ERROR: ALL FLASH PAGES CACHED\r\n");
return CCID_ERR_NO_MEMORY;
}
if (!(p = find_free_page(addr))) {
#ifndef ENABLE_EMULATION
mutex_exit(&mtx_flash);
#endif
printf("ERROR: FLASH CANNOT FIND A PAGE (rare error)\r\n");
return CCID_ERR_MEMORY_FATAL;
}
memcpy(&p->page[addr & (FLASH_SECTOR_SIZE - 1)], data, len);
//printf("Flash: modified page %X with data %x at [%x] (top page %X)\r\n",addr_alg,data,addr&(FLASH_SECTOR_SIZE-1),addr);
#ifndef ENABLE_EMULATION
mutex_exit(&mtx_flash);
#endif
return CCID_OK;
}
int flash_program_halfword(uintptr_t addr, uint16_t data) {
return flash_program_block(addr, (const uint8_t *) &data, sizeof(uint16_t));
}
int flash_program_word(uintptr_t addr, uint32_t data) {
return flash_program_block(addr, (const uint8_t *) &data, sizeof(uint32_t));
}
int flash_program_uintptr(uintptr_t addr, uintptr_t data) {
return flash_program_block(addr, (const uint8_t *) &data, sizeof(uintptr_t));
}
uint8_t *flash_read(uintptr_t addr) {
uintptr_t addr_alg = addr & -FLASH_SECTOR_SIZE;
#ifndef ENABLE_EMULATION
mutex_enter_blocking(&mtx_flash);
#endif
if (ready_pages > 0) {
for (int r = 0; r < TOTAL_FLASH_PAGES; r++) {
if (flash_pages[r].ready && flash_pages[r].address == addr_alg) {
uint8_t *v = &flash_pages[r].page[addr & (FLASH_SECTOR_SIZE - 1)];
#ifndef ENABLE_EMULATION
mutex_exit(&mtx_flash);
#endif
return v;
}
}
}
uint8_t *v = (uint8_t *) addr;
#ifndef ENABLE_EMULATION
mutex_exit(&mtx_flash);
#endif
#if defined(ENABLE_EMULATION) || defined(ESP_PLATFORM)
if (addr >= start_data_pool && addr <= end_rom_pool + sizeof(uintptr_t)) {
v += (uintptr_t) map;
}
#endif
return v;
}
uintptr_t flash_read_uintptr(uintptr_t addr) {
uint8_t *p = flash_read(addr);
uintptr_t v = 0x0;
for (int i = 0; i < sizeof(uintptr_t); i++) {
v |= (uintptr_t) p[i] << (8 * i);
}
return v;
}
uint16_t flash_read_uint16(uintptr_t addr) {
uint8_t *p = flash_read(addr);
uint16_t v = 0x0;
for (int i = 0; i < sizeof(uint16_t); i++) {
v |= p[i] << (8 * i);
}
return v;
}
uint8_t flash_read_uint8(uintptr_t addr) {
return *flash_read(addr);
}
int flash_erase_page(uintptr_t addr, size_t page_size) {
page_flash_t *p = NULL;
#ifndef ENABLE_EMULATION
mutex_enter_blocking(&mtx_flash);
#endif
if (ready_pages == TOTAL_FLASH_PAGES) {
#ifndef ENABLE_EMULATION
mutex_exit(&mtx_flash);
#endif
printf("ERROR: ALL FLASH PAGES CACHED\r\n");
return CCID_ERR_NO_MEMORY;
}
if (!(p = find_free_page(addr))) {
printf("ERROR: FLASH CANNOT FIND A PAGE (rare error)\r\n");
#ifndef ENABLE_EMULATION
mutex_exit(&mtx_flash);
#endif
return CCID_ERR_MEMORY_FATAL;
}
p->erase = true;
p->ready = false;
p->page_size = page_size;
#ifndef ENABLE_EMULATION
mutex_exit(&mtx_flash);
#endif
return CCID_OK;
}
bool flash_check_blank(const uint8_t *p_start, size_t size) {
const uint8_t *p;
for (p = p_start; p < p_start + size; p++) {
if (*p != 0xff) {
return false;
}
}
return true;
}