linphone-ios/coreapi/lime.c

1121 lines
44 KiB
C

/*
linphone
Copyright (C) 2015 Belledonne Communications SARL
This program is free software; you can redistribute it and/or
modify it under the terms of the GNU General Public License
as published by the Free Software Foundation; either version 2
of the License, or (at your option) any later version.
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
You should have received a copy of the GNU General Public License
along with this program; if not, write to the Free Software
Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301, USA.
*/
#include "lime.h"
#ifdef HAVE_CONFIG_H
#include "config.h"
#endif
#ifdef HAVE_LIME
#include "private.h"
#include "bctoolbox/crypto.h"
#define FILE_TRANSFER_KEY_SIZE 32
/**
* @brief check at runtime if LIME is available
*
* @return TRUE when Lime was fully compiled, FALSE when it wasn't
*/
bool_t lime_is_available(void) { return TRUE; }
/**
* @brief convert an hexa char [0-9a-fA-F] into the corresponding unsigned integer value
* Any invalid char will be converted to zero without any warning
*
* @param[in] inputChar a char which shall be in range [0-9a-fA-F]
*
* @return the unsigned integer value in range [0-15]
*/
uint8_t lime_charToByte(uint8_t inputChar) {
/* 0-9 */
if (inputChar>0x29 && inputChar<0x3A) {
return inputChar - 0x30;
}
/* a-f */
if (inputChar>0x60 && inputChar<0x67) {
return inputChar - 0x57; /* 0x57 = 0x61(a) + 0x0A*/
}
/* A-F */
if (inputChar>0x40 && inputChar<0x47) {
return inputChar - 0x37; /* 0x37 = 0x41(a) + 0x0A*/
}
/* shall never arrive here, string is not Hex*/
return 0;
}
/**
* @brief convert a byte which value is in range [0-15] into an hexa char [0-9a-fA-F]
*
* @param[in] inputByte an integer which shall be in range [0-15]
*
* @return the hexa char [0-9a-f] corresponding to the input
*/
uint8_t lime_byteToChar(uint8_t inputByte) {
inputByte &=0x0F; /* restrict the input value to range [0-15] */
/* 0-9 */
if(inputByte<0x0A) {
return inputByte+0x30;
}
/* a-f */
return inputByte + 0x57;
}
/**
* @brief Convert an hexadecimal string into the corresponding byte buffer
*
* @param[out] outputBytes The output bytes buffer, must have a length of half the input string buffer
* @param[in] inputString The input string buffer, must be hexadecimal(it is not checked by function, any non hexa char is converted to 0)
* @param[in] inputStringLength The lenght in chars of the string buffer, output is half this length
*/
void lime_strToUint8(uint8_t *outputBytes, uint8_t *inputString, uint16_t inputStringLength) {
int i;
for (i=0; i<inputStringLength/2; i++) {
outputBytes[i] = (lime_charToByte(inputString[2*i]))<<4 | lime_charToByte(inputString[2*i+1]);
}
}
/**
* @brief Convert a byte buffer into the corresponding hexadecimal string
*
* @param[out] outputString The output string buffer, must have a length of twice the input bytes buffer
* @param[in] inputBytes The input bytes buffer
* @param[in] inputBytesLength The lenght in bytes buffer, output is twice this length
*/
void lime_int8ToStr(uint8_t *outputString, uint8_t *inputBytes, uint16_t inputBytesLength) {
int i;
for (i=0; i<inputBytesLength; i++) {
outputString[2*i] = lime_byteToChar((inputBytes[i]>>4)&0x0F);
outputString[2*i+1] = lime_byteToChar(inputBytes[i]&0x0F);
}
}
/**
* @brief Retrieve selfZID from cache
*
* @param[in] cacheBuffer The xmlDoc containing current cache
* @param[out] selfZid The ZID found as a 24 hexa char string null terminated
*
* @return 0 on success, error code otherwise
*/
static int lime_getSelfZid(xmlDocPtr cacheBuffer, uint8_t selfZid[25]) {
xmlNodePtr cur;
xmlChar *selfZidHex;
if (cacheBuffer == NULL ) {
return LIME_INVALID_CACHE;
}
cur = xmlDocGetRootElement(cacheBuffer);
/* if we found a root element, parse its children node */
if (cur!=NULL)
{
cur = cur->xmlChildrenNode;
}
selfZidHex = NULL;
while (cur!=NULL) {
if ((!xmlStrcmp(cur->name, (const xmlChar *)"selfZID"))){ /* self ZID found, extract it */
selfZidHex = xmlNodeListGetString(cacheBuffer, cur->xmlChildrenNode, 1);
/* copy it to the output buffer and add the null termination */
memcpy(selfZid, selfZidHex, 24);
selfZid[24]='\0';
break;
}
cur = cur->next;
}
/* did we found a ZID? */
if (selfZidHex == NULL) {
return LIME_INVALID_CACHE;
}
xmlFree(selfZidHex);
return 0;
}
int lime_getCachedSndKeysByURI(xmlDocPtr cacheBuffer, limeURIKeys_t *associatedKeys) {
xmlNodePtr cur;
/* parse the file to get all peer matching the sipURI given in associatedKeys*/
if (cacheBuffer == NULL ) { /* there is no cache return error */
return LIME_INVALID_CACHE;
}
/* reset number of associated keys and their buffer */
associatedKeys->associatedZIDNumber = 0;
associatedKeys->peerKeys = NULL;
cur = xmlDocGetRootElement(cacheBuffer);
/* if we found a root element, parse its children node */
if (cur!=NULL)
{
cur = cur->xmlChildrenNode;
}
while (cur!=NULL) { /* loop on all peer nodes */
uint8_t matchingURIFlag = 0; /* this flag is set to one if we found the requested sipURI in the current peer node */
if ((!xmlStrcmp(cur->name, (const xmlChar *)"peer"))) { /* found a peer node, check if there is a matching sipURI node in it */
xmlNodePtr peerNodeChildren = cur->xmlChildrenNode;
matchingURIFlag = 0;
/* loop on children nodes until the end or we found the matching sipURI */
while (peerNodeChildren!=NULL && matchingURIFlag==0) {
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"uri")) { /* found a peer an URI node, check the content */
xmlChar *uriNodeContent = xmlNodeListGetString(cacheBuffer, peerNodeChildren->xmlChildrenNode, 1);
if (!xmlStrcmp(uriNodeContent, (const xmlChar *)associatedKeys->peerURI)) { /* found a match with requested URI */
matchingURIFlag=1;
}
xmlFree(uriNodeContent);
}
peerNodeChildren = peerNodeChildren->next;
}
if (matchingURIFlag == 1) { /* we found a match for the URI in this peer node, extract the keys, session Id and index values */
/* allocate a new limeKey_t structure to hold the retreived keys */
limeKey_t *currentPeerKeys = (limeKey_t *)malloc(sizeof(limeKey_t));
uint8_t itemFound = 0; /* count the item found, we must get all of the requested infos: 5 nodes*/
uint8_t pvs = 0;
peerNodeChildren = cur->xmlChildrenNode; /* reset peerNodeChildren to the first child of node */
while (peerNodeChildren!=NULL && itemFound<5) {
xmlChar *nodeContent = NULL;
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"ZID")) {
nodeContent = xmlNodeListGetString(cacheBuffer, peerNodeChildren->xmlChildrenNode, 1);
lime_strToUint8(currentPeerKeys->peerZID, nodeContent, 24);
itemFound++;
}
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"sndKey")) {
nodeContent = xmlNodeListGetString(cacheBuffer, peerNodeChildren->xmlChildrenNode, 1);
lime_strToUint8(currentPeerKeys->key, nodeContent, 64);
itemFound++;
}
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"sndSId")) {
nodeContent = xmlNodeListGetString(cacheBuffer, peerNodeChildren->xmlChildrenNode, 1);
lime_strToUint8(currentPeerKeys->sessionId, nodeContent, 64);
itemFound++;
}
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"sndIndex")) {
uint8_t sessionIndexBuffer[4]; /* session index is a uint32_t but we first retrieved it as an hexa string, convert it to a 4 uint8_t buffer */
nodeContent = xmlNodeListGetString(cacheBuffer, peerNodeChildren->xmlChildrenNode, 1);
lime_strToUint8(sessionIndexBuffer, nodeContent, 8);
/* convert it back to a uint32_t (MSByte first)*/
currentPeerKeys->sessionIndex = sessionIndexBuffer[3] + (sessionIndexBuffer[2]<<8) + (sessionIndexBuffer[1]<<16) + (sessionIndexBuffer[0]<<24);
itemFound++;
}
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"pvs")) {
nodeContent = xmlNodeListGetString(cacheBuffer, peerNodeChildren->xmlChildrenNode, 1);
lime_strToUint8(&pvs, nodeContent, 2); /* pvs is retrieved as a 2 characters hexa string, convert it to an int8 */
itemFound++;
}
xmlFree(nodeContent);
peerNodeChildren = peerNodeChildren->next;
}
/* check if we have all the requested information and the PVS flag is set to 1 */
if (itemFound == 5 && pvs == 1) {
associatedKeys->associatedZIDNumber +=1;
/* extend array of pointer to limeKey_t structures to add the one we found */
associatedKeys->peerKeys = (limeKey_t **)realloc(associatedKeys->peerKeys, (associatedKeys->associatedZIDNumber)*sizeof(limeKey_t *));
/* add the new entry at the end */
associatedKeys->peerKeys[associatedKeys->associatedZIDNumber-1] = currentPeerKeys;
} else {
free(currentPeerKeys);
}
}
}
cur = cur->next;
}
return 0;
}
int lime_getCachedRcvKeyByZid(xmlDocPtr cacheBuffer, limeKey_t *associatedKey) {
uint8_t peerZidHex[25];
/* to check we collect all the information needed from the cache and that pvs(boolean for previously verified Sas) is set in cache */
uint8_t itemFound = 0;
uint8_t pvs = 0;
xmlNodePtr cur;
if (cacheBuffer == NULL ) { /* there is no cache return error */
return LIME_INVALID_CACHE;
}
/* get the given ZID into hex format */
lime_int8ToStr(peerZidHex, associatedKey->peerZID, 12);
peerZidHex[24]='\0'; /* must be a null terminated string */
cur = xmlDocGetRootElement(cacheBuffer);
/* if we found a root element, parse its children node */
if (cur!=NULL)
{
cur = cur->xmlChildrenNode;
}
while (cur!=NULL) { /* loop on all peer nodes */
if ((!xmlStrcmp(cur->name, (const xmlChar *)"peer"))){ /* found a peer, check his ZID element */
xmlChar *currentZidHex = xmlNodeListGetString(cacheBuffer, cur->xmlChildrenNode->xmlChildrenNode, 1); /* ZID is the first element of peer */
if (!xmlStrcmp(currentZidHex, (const xmlChar *)peerZidHex)) { /* we found the peer element we are looking for */
xmlNodePtr peerNodeChildren = cur->xmlChildrenNode->next;
while (peerNodeChildren != NULL && itemFound<4) { /* look for the tag we want to read : rcvKey, rcvSId, rcvIndex and pvs*/
xmlChar *nodeContent = NULL;
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"rcvKey")) {
nodeContent = xmlNodeListGetString(cacheBuffer, peerNodeChildren->xmlChildrenNode, 1);
lime_strToUint8(associatedKey->key, nodeContent, 64);
itemFound++;
}
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"rcvSId")) {
nodeContent = xmlNodeListGetString(cacheBuffer, peerNodeChildren->xmlChildrenNode, 1);
lime_strToUint8(associatedKey->sessionId, nodeContent, 64);
itemFound++;
}
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"rcvIndex")) {
uint8_t sessionIndexBuffer[4]; /* session index is a uint32_t but we first retrieved it as an hexa string, convert it to a 4 uint8_t buffer */
nodeContent = xmlNodeListGetString(cacheBuffer, peerNodeChildren->xmlChildrenNode, 1);
lime_strToUint8(sessionIndexBuffer, nodeContent, 8);
/* convert it back to a uint32_t (MSByte first)*/
associatedKey->sessionIndex = sessionIndexBuffer[3] + (sessionIndexBuffer[2]<<8) + (sessionIndexBuffer[1]<<16) + (sessionIndexBuffer[0]<<24);
itemFound++;
}
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"pvs")) {
nodeContent = xmlNodeListGetString(cacheBuffer, peerNodeChildren->xmlChildrenNode, 1);
lime_strToUint8(&pvs, nodeContent, 2); /* pvs is retrieved as a 2 characters hexa string, convert it to an int8 */
itemFound++;
}
xmlFree(nodeContent);
peerNodeChildren = peerNodeChildren->next;
}
xmlFree(currentZidHex);
break; /* we parsed the peer node we were looking for, get out of the main while */
}
xmlFree(currentZidHex);
}
cur = cur->next;
}
/* if we manage to find the correct key information and that pvs is set to 1, return 0 (success) */
if ((pvs == 1) && (itemFound == 4)) {
return 0;
}
/* otherwise, key wasn't found or is invalid */
return LIME_NO_VALID_KEY_FOUND_FOR_PEER;
}
int lime_setCachedKey(xmlDocPtr cacheBuffer, limeKey_t *associatedKey, uint8_t role) {
xmlNodePtr cur;
uint8_t peerZidHex[25];
uint8_t keyHex[65]; /* key is 32 bytes long -> 64 bytes string + null termination */
uint8_t sessionIdHex[65]; /* sessionId is 32 bytes long -> 64 bytes string + null termination */
uint8_t sessionIndexHex[9]; /* sessionInedx is an uint32_t : 4 bytes long -> 8 bytes string + null termination */
uint8_t itemFound = 0;
if (cacheBuffer == NULL ) { /* there is no cache return error */
return LIME_INVALID_CACHE;
}
/* get the given ZID into hex format */
lime_int8ToStr(peerZidHex, associatedKey->peerZID, 12);
peerZidHex[24]='\0'; /* must be a null terminated string */
cur = xmlDocGetRootElement(cacheBuffer);
/* if we found a root element, parse its children node */
if (cur!=NULL)
{
cur = cur->xmlChildrenNode;
}
/* convert the given tag content to null terminated Hexadecimal strings */
lime_int8ToStr(keyHex, associatedKey->key, 32);
keyHex[64] = '\0';
lime_int8ToStr(sessionIdHex, associatedKey->sessionId, 32);
sessionIdHex[64] = '\0';
sessionIndexHex[0] = lime_byteToChar((uint8_t)((associatedKey->sessionIndex>>28)&0x0F));
sessionIndexHex[1] = lime_byteToChar((uint8_t)((associatedKey->sessionIndex>>24)&0x0F));
sessionIndexHex[2] = lime_byteToChar((uint8_t)((associatedKey->sessionIndex>>20)&0x0F));
sessionIndexHex[3] = lime_byteToChar((uint8_t)((associatedKey->sessionIndex>>16)&0x0F));
sessionIndexHex[4] = lime_byteToChar((uint8_t)((associatedKey->sessionIndex>>12)&0x0F));
sessionIndexHex[5] = lime_byteToChar((uint8_t)((associatedKey->sessionIndex>>8)&0x0F));
sessionIndexHex[6] = lime_byteToChar((uint8_t)((associatedKey->sessionIndex>>4)&0x0F));
sessionIndexHex[7] = lime_byteToChar((uint8_t)((associatedKey->sessionIndex)&0x0F));
sessionIndexHex[8] = '\0';
while (cur!=NULL && itemFound<3) { /* loop on all peer nodes */
if ((!xmlStrcmp(cur->name, (const xmlChar *)"peer"))){ /* found a peer, check his ZID element */
xmlChar *currentZidHex = xmlNodeListGetString(cacheBuffer, cur->xmlChildrenNode->xmlChildrenNode, 1); /* ZID is the first element of peer */
if (!xmlStrcmp(currentZidHex, (const xmlChar *)peerZidHex)) { /* we found the peer element we are looking for */
xmlNodePtr peerNodeChildren = cur->xmlChildrenNode->next;
while (peerNodeChildren != NULL && itemFound<3) { /* look for the tag we want to write */
if (role == LIME_RECEIVER) { /* writing receiver key */
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"rcvKey")) {
xmlNodeSetContent(peerNodeChildren, (const xmlChar *)keyHex);
itemFound++;
}
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"rcvSId")) {
xmlNodeSetContent(peerNodeChildren, (const xmlChar *)sessionIdHex);
itemFound++;
}
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"rcvIndex")) {
xmlNodeSetContent(peerNodeChildren, (const xmlChar *)sessionIndexHex);
itemFound++;
}
} else { /* writing sender key */
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"sndKey")) {
xmlNodeSetContent(peerNodeChildren, (const xmlChar *)keyHex);
itemFound++;
}
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"sndSId")) {
xmlNodeSetContent(peerNodeChildren, (const xmlChar *)sessionIdHex);
itemFound++;
}
if (!xmlStrcmp(peerNodeChildren->name, (const xmlChar *)"sndIndex")) {
xmlNodeSetContent(peerNodeChildren, (const xmlChar *)sessionIndexHex);
itemFound++;
}
}
peerNodeChildren = peerNodeChildren->next;
}
}
xmlFree(currentZidHex);
}
cur = cur->next;
}
return 0;
}
/**
* @brief Derive in place the key given in parameter and increment session index
* Derivation is made derived Key = HMAC_SHA256(Key, 0x0000001||"MessageKey"||0x00||SessionId||SessionIndex||256)
*
* @param[in/out] key The structure containing the original key which will be overwritten, the sessionId and SessionIndex
*
* @return 0 on success, error code otherwise
*/
static int lime_deriveKey(limeKey_t *key) {
uint8_t inputData[55];
uint8_t derivedKey[32];
if (key == NULL) {
return LIME_UNABLE_TO_DERIVE_KEY;
}
/* Derivation is made derived Key = HMAC_SHA256(Key, 0x0000001||"MessageKey"||0x00||SessionId||SessionIndex||0x00000100)*/
/* total data to be hashed is 55 bytes : 4 + 10 + 1 + 32 + 4 + 4 */
inputData[0] = 0x00;
inputData[1] = 0x00;
inputData[2] = 0x00;
inputData[3] = 0x01;
memcpy(inputData+4, "MessageKey", 10);
inputData[14] = 0x00;
memcpy(inputData+15, key->sessionId, 32);
inputData[47] = (uint8_t)((key->sessionIndex>>24)&0x000000FF);
inputData[48] = (uint8_t)((key->sessionIndex>>16)&0x000000FF);
inputData[49] = (uint8_t)((key->sessionIndex>>8)&0x000000FF);
inputData[50] = (uint8_t)(key->sessionIndex&0x000000FF);
inputData[51] = 0x00;
inputData[52] = 0x00;
inputData[53] = 0x01;
inputData[54] = 0x00;
/* derive the key in a temp buffer */
bctbx_hmacSha256(key->key, 32, inputData, 55, 32, derivedKey);
/* overwrite the old key with the derived one */
memcpy(key->key, derivedKey, 32);
/* increment the session Index */
key->sessionIndex += 1;
return 0;
}
void lime_freeKeys(limeURIKeys_t *associatedKeys) {
int i;
/* free all associated keys */
for (i=0; i< associatedKeys->associatedZIDNumber; i++) {
if (associatedKeys->peerKeys[i] != NULL) {
/*shouldn't we memset to zero the content of peerKeys[i] in order clear keys?*/
free(associatedKeys->peerKeys[i]);
associatedKeys->peerKeys[i] = NULL;
}
}
free(associatedKeys->peerKeys);
associatedKeys->peerKeys = NULL;
/* free sipURI string */
free(associatedKeys->peerURI);
associatedKeys->peerURI = NULL;
}
int lime_encryptMessage(limeKey_t *key, uint8_t *plainMessage, uint32_t messageLength, uint8_t selfZID[12], uint8_t *encryptedMessage) {
uint8_t authenticatedData[28];
/* Authenticated data is senderZID(12 bytes)||receiverZID(12 bytes)||sessionIndex(4 bytes) */
memcpy(authenticatedData, selfZID, 12);
memcpy(authenticatedData+12, key->peerZID, 12);
authenticatedData[24] = (uint8_t)((key->sessionIndex>>24)&0x000000FF);
authenticatedData[25] = (uint8_t)((key->sessionIndex>>16)&0x000000FF);
authenticatedData[26] = (uint8_t)((key->sessionIndex>>8)&0x000000FF);
authenticatedData[27] = (uint8_t)(key->sessionIndex&0x000000FF);
/* AES-GCM : key is 192 bits long, Init Vector 64 bits. 256 bits key given is AES key||IV */
/* tag is 16 bytes long and is set in the 16 first bytes of the encrypted message */
return bctbx_aes_gcm_encrypt_and_tag(key->key, 24,
plainMessage, messageLength,
authenticatedData, 28,
key->key+24, 8, /* IV is at the end(last 64 bits) of the given key buffer */
encryptedMessage, 16, /* the first 16 bytes of output are the authentication tag */
encryptedMessage+16); /* actual encrypted message starts after 16 bytes of authentication tag */
return 0;
}
int lime_encryptFile(void **cryptoContext, unsigned char *key, size_t length, char *plain, char *cipher) {
bctbx_aes_gcm_context_t *gcmContext;
if (*cryptoContext == NULL) { /* first call to the function, allocate a crypto context and initialise it */
/* key contains 192bits of key || 64 bits of Initialisation Vector, no additional data */
gcmContext = bctbx_aes_gcm_context_new(key, 24, NULL, 0, key+24, 8, BCTBX_GCM_ENCRYPT);
*cryptoContext = gcmContext;
} else { /* this is not the first call, get the context */
gcmContext = (bctbx_aes_gcm_context_t *)*cryptoContext;
}
if (length != 0) {
bctbx_aes_gcm_process_chunk(gcmContext, (const uint8_t *)plain, length, (uint8_t *)cipher);
} else { /* lenght is 0, finish the stream, no tag to be generated */
bctbx_aes_gcm_finish(gcmContext, NULL, 0);
*cryptoContext = NULL;
}
return 0;
}
int lime_decryptFile(void **cryptoContext, unsigned char *key, size_t length, char *plain, char *cipher) {
bctbx_aes_gcm_context_t *gcmContext;
if (*cryptoContext == NULL) { /* first call to the function, allocate a crypto context and initialise it */
/* key contains 192bits of key || 64 bits of Initialisation Vector, no additional data */
gcmContext = bctbx_aes_gcm_context_new(key, 24, NULL, 0, key+24, 8, BCTBX_GCM_DECRYPT);
*cryptoContext = gcmContext;
} else { /* this is not the first call, get the context */
gcmContext = (bctbx_aes_gcm_context_t *)*cryptoContext;
}
if (length != 0) {
bctbx_aes_gcm_process_chunk(gcmContext, (const unsigned char *)cipher, length, (unsigned char *)plain);
} else { /* lenght is 0, finish the stream */
bctbx_aes_gcm_finish(gcmContext, NULL, 0);
*cryptoContext = NULL;
}
return 0;
}
int lime_decryptMessage(limeKey_t *key, uint8_t *encryptedMessage, uint32_t messageLength, uint8_t selfZID[12], uint8_t *plainMessage) {
uint8_t authenticatedData[28];
int retval;
/* Authenticated data is senderZID(12 bytes)||receiverZID(12 bytes)||sessionIndex(4 bytes) */
memcpy(authenticatedData, key->peerZID, 12);
memcpy(authenticatedData+12, selfZID, 12);
authenticatedData[24] = (uint8_t)((key->sessionIndex>>24)&0x000000FF);
authenticatedData[25] = (uint8_t)((key->sessionIndex>>16)&0x000000FF);
authenticatedData[26] = (uint8_t)((key->sessionIndex>>8)&0x000000FF);
authenticatedData[27] = (uint8_t)(key->sessionIndex&0x000000FF);
/* AES-GCM : key is 192 bits long, Init Vector 64 bits. 256 bits key given is AES key||IV */
/* tag is 16 bytes long and is the 16 first bytes of the encrypted message */
retval = bctbx_aes_gcm_decrypt_and_auth(key->key, 24, /* key is 192 bits long */
encryptedMessage+16, messageLength-16, /* encrypted message first 16 bytes store the authentication tag, then is the actual message */
authenticatedData, 28, /* additionnal data needed for authentication */
key->key+24, 8, /* last 8 bytes of key is the initialisation vector */
encryptedMessage, 16, /* first 16 bytes of message is the authentication tag */
plainMessage);
/* add the null termination char */
plainMessage[messageLength-16] = '\0';
return retval;
}
int lime_createMultipartMessage(xmlDocPtr cacheBuffer, uint8_t *message, uint8_t *peerURI, uint8_t **output) {
uint8_t selfZidHex[25];
uint8_t selfZid[12]; /* same data but in byte buffer */
uint32_t encryptedMessageLength;
limeURIKeys_t associatedKeys;
xmlDocPtr xmlOutputMessage;
xmlNodePtr rootNode;
int i;
int xmlStringLength;
xmlChar *local_output = NULL;
/* retrieve selfZIDHex from cache(return a 24 char hexa string + null termination) */
if (lime_getSelfZid(cacheBuffer, selfZidHex) != 0) {
return LIME_UNABLE_TO_ENCRYPT_MESSAGE;
}
lime_strToUint8(selfZid, selfZidHex, 24);
/* encrypted message length is plaintext + 16 for tag */
encryptedMessageLength = (uint32_t)strlen((char *)message) + 16;
/* retrieve keys associated to the peer URI */
associatedKeys.peerURI = (uint8_t *)malloc(strlen((char *)peerURI)+1);
strcpy((char *)(associatedKeys.peerURI), (char *)peerURI);
associatedKeys.associatedZIDNumber = 0;
associatedKeys.peerKeys = NULL;
if (lime_getCachedSndKeysByURI(cacheBuffer, &associatedKeys) != 0) {
lime_freeKeys(&associatedKeys);
return LIME_UNABLE_TO_ENCRYPT_MESSAGE;
}
if (associatedKeys.associatedZIDNumber == 0) {
lime_freeKeys(&associatedKeys);
return LIME_NO_VALID_KEY_FOUND_FOR_PEER;
}
/* create an xml doc to hold the multipart message */
xmlOutputMessage = xmlNewDoc((const xmlChar *)"1.0");
/* root tag is "doc" */
rootNode = xmlNewDocNode(xmlOutputMessage, NULL, (const xmlChar *)"doc", NULL);
xmlDocSetRootElement(xmlOutputMessage, rootNode);
/* add the self ZID child */
xmlNewTextChild(rootNode, NULL, (const xmlChar *)"ZID", selfZidHex);
/* loop on all keys found */
for (i=0; i<associatedKeys.associatedZIDNumber; i++) {
uint8_t peerZidHex[25];
uint8_t sessionIndexHex[9];
xmlNodePtr msgNode;
size_t b64Size = 0;
unsigned char *encryptedMessageb64;
/* encrypt message with current key */
limeKey_t *currentKey = associatedKeys.peerKeys[i];
/* encrypted message include a 16 bytes tag */
uint8_t *encryptedMessage = (uint8_t *)ms_malloc(encryptedMessageLength);
lime_encryptMessage(currentKey, message, (uint32_t)strlen((char *)message), selfZid, encryptedMessage);
/* add a "msg" node the the output message, doc node is :
* <msg>
* <pzid>peerZID</pzid>
* <index>session index</index>
* <text>ciphertext</text>
* </msg> */
msgNode = xmlNewDocNode(xmlOutputMessage, NULL, (const xmlChar *)"msg", NULL);
lime_int8ToStr(peerZidHex, currentKey->peerZID, 12);
peerZidHex[24] = '\0';
sessionIndexHex[0] = lime_byteToChar((uint8_t)((currentKey->sessionIndex>>28)&0x0F));
sessionIndexHex[1] = lime_byteToChar((uint8_t)((currentKey->sessionIndex>>24)&0x0F));
sessionIndexHex[2] = lime_byteToChar((uint8_t)((currentKey->sessionIndex>>20)&0x0F));
sessionIndexHex[3] = lime_byteToChar((uint8_t)((currentKey->sessionIndex>>16)&0x0F));
sessionIndexHex[4] = lime_byteToChar((uint8_t)((currentKey->sessionIndex>>12)&0x0F));
sessionIndexHex[5] = lime_byteToChar((uint8_t)((currentKey->sessionIndex>>8)&0x0F));
sessionIndexHex[6] = lime_byteToChar((uint8_t)((currentKey->sessionIndex>>4)&0x0F));
sessionIndexHex[7] = lime_byteToChar((uint8_t)((currentKey->sessionIndex)&0x0F));
sessionIndexHex[8] = '\0';
xmlNewTextChild(msgNode, NULL, (const xmlChar *)"pzid", peerZidHex);
xmlNewTextChild(msgNode, NULL, (const xmlChar *)"index", sessionIndexHex);
/* convert the cipherText to base 64 */
bctbx_base64_encode(NULL, &b64Size, encryptedMessage, encryptedMessageLength); /* b64Size is 0, so it is set to the requested output buffer size */
encryptedMessageb64 = ms_malloc(b64Size+1); /* allocate a buffer of requested size +1 for NULL termination */
bctbx_base64_encode(encryptedMessageb64, &b64Size, encryptedMessage, encryptedMessageLength); /* b64Size is 0, so it is set to the requested output buffer size */
encryptedMessageb64[b64Size] = '\0'; /* libxml need a null terminated string */
xmlNewTextChild(msgNode, NULL, (const xmlChar *)"text", (const xmlChar *)encryptedMessageb64);
ms_free(encryptedMessage);
ms_free(encryptedMessageb64);
/* add the message Node into the doc */
xmlAddChild(rootNode, msgNode);
/* update the key used */
lime_deriveKey(currentKey);
lime_setCachedKey(cacheBuffer, currentKey, LIME_SENDER);
}
/* dump the whole message doc into the output */
xmlDocDumpFormatMemoryEnc(xmlOutputMessage, &local_output, &xmlStringLength, "UTF-8", 0);
*output = (uint8_t *)ms_malloc(xmlStringLength + 1);
memcpy(*output, local_output, xmlStringLength);
(*output)[xmlStringLength] = '\0';
xmlFree(local_output);
xmlFreeDoc(xmlOutputMessage);
lime_freeKeys(&associatedKeys);
return 0;
}
int lime_decryptMultipartMessage(xmlDocPtr cacheBuffer, uint8_t *message, uint8_t **output) {
int retval;
uint8_t selfZidHex[25];
uint8_t selfZid[12]; /* same data but in byte buffer */
limeKey_t associatedKey;
xmlChar *peerZidHex = NULL;
xmlNodePtr cur;
uint8_t *encryptedMessage = NULL;
size_t encryptedMessageLength = 0;
uint32_t usedSessionIndex = 0;
xmlDocPtr xmlEncryptedMessage;
if (cacheBuffer == NULL) {
return LIME_INVALID_CACHE;
}
/* retrieve selfZIDHex from cache(return a 24 char hexa string + null termination) */
if (lime_getSelfZid(cacheBuffer, selfZidHex) != 0) {
return LIME_UNABLE_TO_DECRYPT_MESSAGE;
}
lime_strToUint8(selfZid, selfZidHex, 24);
/* parse the message into an xml doc */
/* make sure we have a valid xml message before trying to parse it */
if (memcmp(message, "<?xml version=\"1.0\" encoding=\"UTF-8\"?>", 38) != 0) {
return LIME_INVALID_ENCRYPTED_MESSAGE;
}
xmlEncryptedMessage = xmlParseDoc((const xmlChar *)message);
if (xmlEncryptedMessage == NULL) {
return LIME_INVALID_ENCRYPTED_MESSAGE;
}
/* retrieve the sender ZID which is the first child of root */
cur = xmlDocGetRootElement(xmlEncryptedMessage);
if (cur != NULL) {
cur = cur->xmlChildrenNode;
if ((!xmlStrcmp(cur->name, (const xmlChar *)"ZID"))){ /* sender ZID found, extract it */
peerZidHex = xmlNodeListGetString(xmlEncryptedMessage, cur->xmlChildrenNode, 1);
/* convert it from hexa string to bytes string and set the result in the associatedKey structure */
lime_strToUint8(associatedKey.peerZID, peerZidHex, (uint16_t)strlen((char *)peerZidHex));
cur = cur->next;
}
}
if (peerZidHex != NULL) {
/* get from cache the matching key */
retval = lime_getCachedRcvKeyByZid(cacheBuffer, &associatedKey);
if (retval != 0) {
xmlFree(peerZidHex);
xmlFreeDoc(xmlEncryptedMessage);
return retval;
}
/* retrieve the portion of message which is encrypted with our key */
while (cur != NULL) { /* loop on all "msg" node in the message */
xmlNodePtr msgChildrenNode = cur->xmlChildrenNode;
xmlChar *currentZidHex = xmlNodeListGetString(cacheBuffer, msgChildrenNode->xmlChildrenNode, 1); /* pZID is the first element of msg */
if (!xmlStrcmp(currentZidHex, (const xmlChar *)selfZidHex)) { /* we found the msg node we are looking for */
/* get the index (second node in the msg one) */
xmlChar *sessionIndexHex;
xmlChar *encryptedMessageb64;
msgChildrenNode = msgChildrenNode->next;
sessionIndexHex = xmlNodeListGetString(cacheBuffer, msgChildrenNode->xmlChildrenNode, 1);
usedSessionIndex = (((uint32_t)lime_charToByte(sessionIndexHex[0]))<<28)
| (((uint32_t)lime_charToByte(sessionIndexHex[1]))<<24)
| (((uint32_t)lime_charToByte(sessionIndexHex[2]))<<20)
| (((uint32_t)lime_charToByte(sessionIndexHex[3]))<<16)
| (((uint32_t)lime_charToByte(sessionIndexHex[4]))<<12)
| (((uint32_t)lime_charToByte(sessionIndexHex[5]))<<8)
| (((uint32_t)lime_charToByte(sessionIndexHex[6]))<<4)
| (((uint32_t)lime_charToByte(sessionIndexHex[7])));
xmlFree(sessionIndexHex);
/* get the encrypted message */
msgChildrenNode = msgChildrenNode->next;
/* convert the cipherText from base 64 */
encryptedMessageb64 = xmlNodeListGetString(cacheBuffer, msgChildrenNode->xmlChildrenNode, 1);
bctbx_base64_decode(NULL, &encryptedMessageLength, encryptedMessageb64, strlen((char *)encryptedMessageb64)); /* encryptedMessageLength is 0, so it will be set to the requested buffer length */
encryptedMessage = (uint8_t *)ms_malloc(encryptedMessageLength);
bctbx_base64_decode(encryptedMessage, &encryptedMessageLength, encryptedMessageb64, strlen((char *)encryptedMessageb64));
xmlFree(encryptedMessageb64);
xmlFree(currentZidHex);
break;
}
cur = cur->next;
xmlFree(currentZidHex);
}
}
xmlFree(peerZidHex);
xmlFreeDoc(xmlEncryptedMessage);
/* do we have retrieved correctly all the needed data */
if (encryptedMessage == NULL) {
return LIME_UNABLE_TO_DECRYPT_MESSAGE;
}
/* shall we derive our key before going for decryption */
if (usedSessionIndex < associatedKey.sessionIndex) {
/* something wen't wrong with the cache, this shall never happend */
ms_free(encryptedMessage);
return LIME_UNABLE_TO_DECRYPT_MESSAGE;
}
if ((usedSessionIndex - associatedKey.sessionIndex > MAX_DERIVATION_NUMBER) ) {
/* we missed to many messages, ask for a cache reset via a ZRTP call */
ms_free(encryptedMessage);
return LIME_UNABLE_TO_DECRYPT_MESSAGE;
}
while (usedSessionIndex>associatedKey.sessionIndex) {
lime_deriveKey(&associatedKey);
}
/* decrypt the message */
*output = (uint8_t *)ms_malloc(encryptedMessageLength - 16 +1); /* plain message is same length than encrypted one with 16 bytes less for the tag + 1 to add the null termination char */
retval = lime_decryptMessage(&associatedKey, encryptedMessage, (uint32_t)encryptedMessageLength, selfZid, *output);
ms_free(encryptedMessage);
if (retval != 0) {
ms_free(*output);
*output = NULL;
return LIME_UNABLE_TO_DECRYPT_MESSAGE;
}
/* update used key */
lime_deriveKey(&associatedKey);
lime_setCachedKey(cacheBuffer, &associatedKey, LIME_RECEIVER);
return 0;
}
bool_t linphone_chat_room_lime_available(LinphoneChatRoom *cr) {
if (cr) {
switch (linphone_core_lime_enabled(cr->lc)) {
case LinphoneLimeDisabled: return FALSE;
case LinphoneLimeMandatory:
case LinphoneLimePreferred: {
FILE *CACHEFD = NULL;
if (cr->lc->zrtp_secrets_cache != NULL) {
CACHEFD = fopen(cr->lc->zrtp_secrets_cache, "rb+");
if (CACHEFD) {
size_t cacheSize;
xmlDocPtr cacheXml;
char *cacheString = ms_load_file_content(CACHEFD, &cacheSize);
if (!cacheString) {
ms_warning("Unable to load content of ZRTP ZID cache");
return FALSE;
}
cacheString[cacheSize] = '\0';
cacheSize += 1;
fclose(CACHEFD);
cacheXml = xmlParseDoc((xmlChar*)cacheString);
ms_free(cacheString);
if (cacheXml) {
bool_t res;
limeURIKeys_t associatedKeys;
char *peer = linphone_address_as_string_uri_only(linphone_chat_room_get_peer_address(cr));
/* retrieve keys associated to the peer URI */
associatedKeys.peerURI = (uint8_t *)malloc(strlen(peer)+1);
strcpy((char *)(associatedKeys.peerURI), peer);
associatedKeys.associatedZIDNumber = 0;
associatedKeys.peerKeys = NULL;
res = (lime_getCachedSndKeysByURI(cacheXml, &associatedKeys) == 0 && associatedKeys.associatedZIDNumber != 0);
lime_freeKeys(&associatedKeys);
xmlFreeDoc(cacheXml);
ms_free(peer);
return res;
}
}
}
}
}
}
return FALSE;
}
int lime_im_encryption_engine_process_incoming_message_cb(LinphoneImEncryptionEngine *engine, LinphoneChatRoom *room, LinphoneChatMessage *msg) {
LinphoneCore *lc = linphone_im_encryption_engine_get_core(engine);
int errcode = -1;
/* check if we have a xml/cipher message to be decrypted */
if (msg->content_type && (strcmp("xml/cipher", msg->content_type) == 0 || strcmp("application/cipher.vnd.gsma.rcs-ft-http+xml", msg->content_type) == 0)) {
/* access the zrtp cache to get keys needed to decipher the message */
FILE *CACHEFD = NULL;
const char *zrtp_secrets_cache = linphone_core_get_zrtp_secrets_file(lc);
errcode = 0;
if (zrtp_secrets_cache != NULL) CACHEFD = fopen(zrtp_secrets_cache, "rb+");
if (CACHEFD == NULL) {
ms_warning("Unable to access ZRTP ZID cache to decrypt message");
errcode = 500;
return errcode;
} else {
size_t cacheSize;
char *cacheString;
int retval;
xmlDocPtr cacheXml;
uint8_t *decrypted_body = NULL;
cacheString=ms_load_file_content(CACHEFD, &cacheSize);
if (!cacheString){
ms_warning("Unable to load content of ZRTP ZID cache to decrypt message");
errcode = 500;
return errcode;
}
cacheString[cacheSize] = '\0';
cacheSize += 1;
fclose(CACHEFD);
cacheXml = xmlParseDoc((xmlChar*)cacheString);
ms_free(cacheString);
retval = lime_decryptMultipartMessage(cacheXml, (uint8_t *)msg->message, &decrypted_body);
if (retval != 0) {
ms_warning("Unable to decrypt message, reason : %s", lime_error_code_to_string(retval));
if (decrypted_body) ms_free(decrypted_body);
xmlFreeDoc(cacheXml);
errcode = 488;
return errcode;
} else {
/* dump updated cache to a string */
xmlChar *xmlStringOutput;
int xmlStringLength;
xmlDocDumpFormatMemoryEnc(cacheXml, &xmlStringOutput, &xmlStringLength, "UTF-8", 0);
/* write it to the cache file */
CACHEFD = fopen(zrtp_secrets_cache, "wb+");
if (fwrite(xmlStringOutput, 1, xmlStringLength, CACHEFD)<=0){
ms_warning("Fail to write cache");
}
xmlFree(xmlStringOutput);
fclose(CACHEFD);
if (msg->message) {
ms_free(msg->message);
}
msg->message = (char *)decrypted_body;
if (strcmp("application/cipher.vnd.gsma.rcs-ft-http+xml", msg->content_type) == 0) {
ms_free(msg->content_type);
msg->content_type = ms_strdup("application/vnd.gsma.rcs-ft-http+xml");
} else {
ms_free(msg->content_type);
msg->content_type = ms_strdup("text/plain");
}
}
xmlFreeDoc(cacheXml);
}
}
return errcode;
}
int lime_im_encryption_engine_process_outgoing_message_cb(LinphoneImEncryptionEngine *engine, LinphoneChatRoom *room, LinphoneChatMessage *msg) {
LinphoneCore *lc = linphone_im_encryption_engine_get_core(engine);
int errcode = -1;
char *content_type = "xml/cipher";
if(linphone_core_lime_enabled(room->lc)) {
if (linphone_chat_room_lime_available(room)) {
if (msg->content_type) {
if (strcmp(msg->content_type, "application/vnd.gsma.rcs-ft-http+xml") == 0) {
/* it's a file transfer, content type shall be set to
application/cipher.vnd.gsma.rcs-ft-http+xml*/
content_type = "application/cipher.vnd.gsma.rcs-ft-http+xml";
} else if (strcmp(msg->content_type, "application/im-iscomposing+xml") == 0) {
/* We don't encrypt composing messages */
return errcode;
}
}
msg->content_type = ms_strdup(content_type);
/* access the zrtp cache to get keys needed to cipher the message */
const char *zrtp_secrets_cache = linphone_core_get_zrtp_secrets_file(lc);
FILE *CACHEFD = fopen(zrtp_secrets_cache, "rb+");
errcode = 0;
if (CACHEFD == NULL) {
ms_warning("Unable to access ZRTP ZID cache to encrypt message");
errcode = 488;
} else {
size_t cacheSize;
char *cacheString;
xmlDocPtr cacheXml;
int retval;
uint8_t *crypted_body = NULL;
char *peer = linphone_address_as_string_uri_only(linphone_chat_room_get_peer_address(room));
cacheString=ms_load_file_content(CACHEFD, &cacheSize);
if (!cacheString){
ms_warning("Unable to load content of ZRTP ZID cache to encrypt message");
errcode = 500;
return errcode;
}
cacheString[cacheSize] = '\0';
cacheSize += 1;
fclose(CACHEFD);
cacheXml = xmlParseDoc((xmlChar*)cacheString);
ms_free(cacheString);
retval = lime_createMultipartMessage(cacheXml, (uint8_t *)msg->message, (uint8_t *)peer, &crypted_body);
if (retval != 0) {
ms_warning("Unable to encrypt message for %s : %s", peer, lime_error_code_to_string(retval));
if (crypted_body) ms_free(crypted_body);
errcode = 488;
} else {
/* dump updated cache to a string */
xmlChar *xmlStringOutput;
int xmlStringLength;
xmlDocDumpFormatMemoryEnc(cacheXml, &xmlStringOutput, &xmlStringLength, "UTF-8", 0);
/* write it to the cache file */
CACHEFD = fopen(zrtp_secrets_cache, "wb+");
if (fwrite(xmlStringOutput, 1, xmlStringLength, CACHEFD)<=0){
ms_warning("Unable to write zid cache");
}
xmlFree(xmlStringOutput);
fclose(CACHEFD);
if (msg->message) {
ms_free(msg->message);
}
msg->message = (char *)crypted_body;
}
ms_free(peer);
xmlFreeDoc(cacheXml);
}
} else {
if (linphone_core_lime_enabled(lc) == LinphoneLimeMandatory) {
ms_warning("Unable to access ZRTP ZID cache to encrypt message");
errcode = 488;
}
}
}
return errcode;
}
int lime_im_encryption_engine_process_downloading_file_cb(LinphoneImEncryptionEngine *engine, LinphoneChatMessage *msg, const char *buffer, size_t size, char *decrypted_buffer) {
if (linphone_content_get_key(msg->file_transfer_information) == NULL) return -1;
if (buffer == NULL || size == 0) {
return lime_decryptFile(linphone_content_get_cryptoContext_address(msg->file_transfer_information), NULL, 0, NULL, NULL);
}
return lime_decryptFile(linphone_content_get_cryptoContext_address(msg->file_transfer_information),
(unsigned char *)linphone_content_get_key(msg->file_transfer_information), size, decrypted_buffer,
(char *)buffer);
}
int lime_im_encryption_engine_process_uploading_file_cb(LinphoneImEncryptionEngine *engine, LinphoneChatMessage *msg, size_t offset, const char *buffer, size_t *size, char *encrypted_buffer) {
if (linphone_content_get_key(msg->file_transfer_information) == NULL) return -1;
if (buffer == NULL || *size == 0) {
return lime_encryptFile(linphone_content_get_cryptoContext_address(msg->file_transfer_information), NULL, 0, NULL, NULL);
}
if (offset + *size < linphone_content_get_size(msg->file_transfer_information)) {
*size -= (*size % 16);
}
return lime_encryptFile(linphone_content_get_cryptoContext_address(msg->file_transfer_information),
(unsigned char *)linphone_content_get_key(msg->file_transfer_information), *size,
(char *)buffer, encrypted_buffer);
}
bool_t lime_im_encryption_engine_is_file_encryption_enabled_cb(LinphoneImEncryptionEngine *engine, LinphoneChatRoom *room) {
LinphoneCore *lc = linphone_im_encryption_engine_get_core(engine);
return linphone_chat_room_lime_available(room) && linphone_core_lime_for_file_sharing_enabled(lc);
}
void lime_im_encryption_engine_generate_file_transfer_key_cb(LinphoneImEncryptionEngine *engine, LinphoneChatRoom *room, LinphoneChatMessage *msg) {
char keyBuffer [FILE_TRANSFER_KEY_SIZE]; /* temporary storage of generated key: 192 bits of key + 64 bits of initial vector */
/* generate a random 192 bits key + 64 bits of initial vector and store it into the
* file_transfer_information->key field of the msg */
sal_get_random_bytes((unsigned char *)keyBuffer, FILE_TRANSFER_KEY_SIZE);
linphone_content_set_key(msg->file_transfer_information, keyBuffer, FILE_TRANSFER_KEY_SIZE); /* key is duplicated in the content private structure */
}
#else /* HAVE_LIME */
bool_t lime_is_available() { return FALSE; }
int lime_decryptFile(void **cryptoContext, unsigned char *key, size_t length, char *plain, char *cipher) { return LIME_NOT_ENABLED;}
int lime_decryptMultipartMessage(xmlDocPtr cacheBuffer, uint8_t *message, uint8_t **output) { return LIME_NOT_ENABLED;}
int lime_createMultipartMessage(xmlDocPtr cacheBuffer, uint8_t *message, uint8_t *peerURI, uint8_t **output) { return LIME_NOT_ENABLED;}
int lime_encryptFile(void **cryptoContext, unsigned char *key, size_t length, char *plain, char *cipher) {return LIME_NOT_ENABLED;}
void lime_freeKeys(limeURIKeys_t *associatedKeys){
}
int lime_getCachedSndKeysByURI(xmlDocPtr cacheBuffer, limeURIKeys_t *associatedKeys){
return LIME_NOT_ENABLED;
}
int lime_encryptMessage(limeKey_t *key, uint8_t *plainMessage, uint32_t messageLength, uint8_t selfZID[12], uint8_t *encryptedMessage) {
return LIME_NOT_ENABLED;
}
int lime_setCachedKey(xmlDocPtr cacheBuffer, limeKey_t *associatedKey, uint8_t role) {
return LIME_NOT_ENABLED;
}
int lime_getCachedRcvKeyByZid(xmlDocPtr cacheBuffer, limeKey_t *associatedKey) {
return LIME_NOT_ENABLED;
}
int lime_decryptMessage(limeKey_t *key, uint8_t *encryptedMessage, uint32_t messageLength, uint8_t selfZID[12], uint8_t *plainMessage) {
return LIME_NOT_ENABLED;
}
bool_t linphone_chat_room_lime_available(LinphoneChatRoom *cr) {
return FALSE;
}
int lime_im_encryption_engine_process_incoming_message_cb(LinphoneImEncryptionEngine *engine, LinphoneChatRoom *room, LinphoneChatMessage *msg) {
return 500;
}
int lime_im_encryption_engine_process_outgoing_message_cb(LinphoneImEncryptionEngine *engine, LinphoneChatRoom *room, LinphoneChatMessage *msg) {
return 500;
}
int lime_im_encryption_engine_process_downloading_file_cb(LinphoneImEncryptionEngine *engine, LinphoneChatMessage *msg, const char *buffer, size_t size, char *decrypted_buffer) {
return 500;
}
int lime_im_encryption_engine_process_uploading_file_cb(LinphoneImEncryptionEngine *engine, LinphoneChatMessage *msg, size_t offset, const char *buffer, size_t *size, char *encrypted_buffer) {
return 500;
}
bool_t lime_im_encryption_engine_is_file_encryption_enabled_cb(LinphoneImEncryptionEngine *engine, LinphoneChatRoom *room) {
return FALSE;
}
void lime_im_encryption_engine_generate_file_transfer_key_cb(LinphoneImEncryptionEngine *engine, LinphoneChatRoom *room, LinphoneChatMessage *msg) {
}
#endif /* HAVE_LIME */
char *lime_error_code_to_string(int errorCode) {
switch (errorCode) {
case LIME_INVALID_CACHE: return "Invalid ZRTP cache";
case LIME_UNABLE_TO_DERIVE_KEY: return "Unable to derive Key";
case LIME_UNABLE_TO_ENCRYPT_MESSAGE: return "Unable to encrypt message";
case LIME_UNABLE_TO_DECRYPT_MESSAGE: return "Unable to decrypt message";
case LIME_NO_VALID_KEY_FOUND_FOR_PEER: return "No valid key found";
case LIME_INVALID_ENCRYPTED_MESSAGE: return "Invalid encrypted message";
case LIME_NOT_ENABLED: return "Lime not enabled at build";
}
return "Unknow error";
}